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Theoretical Rheology of Suspensions of Ferromagnetic 
Rod-like Particles 1 

A. R. Altenberger 2 and J. S. Dahler 2 

We extend the linear response-like derivation of the generalized Navier-Stokes 
equation to non-Newtonian flows with rate of strain-dependent transport coef- 
ficients. We derive a time correlation function expression for the viscosity tensor 
and point out possible ambiguities in the operational definitions of viscosity 
coefficients. Our analysis is specific to a suspension of polar, rod-like 
ferromagnetic particles. A commentary is included about the approximations 
that lead from the time correlation function and the molecular definition of the 
viscosity tensor to the standard, Brownian dynamics model used in the 
theoretical rheology of suspensions. Some theoretical difficulties and logical 
inconsistencies are pointed out. Preliminary results for the transport coefficients 
of dilute suspension of magnetic rod-like particles are presented. 
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time correlation functions. 

1. I N T R O D U C T I O N  

During recent years an increased interest can be detected in the study of 
the rheological properties of nonsimple fluid mixtures. In particular, 
solutions of rod-like macroparticles or polymers are often investigated due 
to their common occurrence in nature and important practical 
applications. There are numerous, unanswered theoretical questions related 
to proper statistical mechanical and hydrodynamical descriptions of such 
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systems. Particularly important are questions pertaining to their non- 
Newtonian and viscoelastic behavior and to the ordering produced by 
externally applied electric or magnetic fields. 

In the present paper we report results of our theoretical research on 
the rheology of dilute solutions of rod-like particles having permanent 
magnetic (or electric) dipoles along the particle axes. Solutions of 
ferromagnetic inorganic crystals (iron oxide, chromium dioxide) or rigid 
organic macromolecules (p-azoxyanisole, TMV virus) belong to this class. 
Our model of dipolar rod-like particles is similar to that we have used 
previously [1-4]. The ferro- or paramagnetic particle is represented by a 
rigid dumbbell whose two interaction sites have identical masses but 
opposite, formal magnetic charges. The solvent consists of spherical, non- 
polarizable molecules with diameters much smaller than the lengths of the 
rods. We assume that the mixture is placed in a uniform, constant magnetic 
field which orients the dipoles. This ordering is disturbed by the flow of the 
solution. 

The model of a solution that is most often used in polymer rheology 
treats solute components as sets of Brownian particles moving randomly in 
a structureless continuum described by a linearized Navier-Stokes equation 
[5, 6]. This model greatly oversimplifies the mechanical description of the 
system and, although useful, poses some conceptual problems that are not 
likely to be solved without reference to a more complete statistical 
mechanical description. Some of these difficulties are discussed here in 
connection with the definition of the viscosity tensor in terms of the 
microscopic stress, the equilibrium time correlation function, and a 
proposed extension of this formalism to the region of non-Newtonian 
flows. In our opinion, it is advisable to retain a detailed micromechanical 
formulation of the problem as long as possible, thus postponing the 
introduction of the Brownian approximation to the dynamics to a very late 
stage in the calculation. A premature introduction of the Langevin-like, 
Rouse-Zimm equations of motion with a semiphenomenological friction 
force (and "random" force) can lead to serious difficulties and even to 
erroneous conclusions. 

2. T H E  D Y N A M I C S  O F  S O L U T I O N S  O F  P O L A R  ROD-LIKE 
PARTICLES 

The momentum conservation equation for the mixture can be written 
in the form 

Otg(r, t) = V,- ~(r, t) (1) 
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where g(r, t) is the momentum density and ~(r, t) the stress tensor of the 
solution. The latter can be expressed as the ensemble average 

~(r, t ) = f  dF F(F, t)~(r, O)=f dF F(F, O)~(r, t) (2) 

of the corresponding microscopic stress, 6(r, t). The symbol F appearing 
here denotes a complete set of phase space variables and F(F, t) is the 
ensemble distribution function at time t. 

The microscopic stress is a sum of contributions due to the two com- 
ponents of the mixture (solvent S and Brownian solute B) taken separately 
and a term due to their mutual interactions, viz., 

= ~ s + ~ a  +~BS (3) 

Detailed formulas for these quantities are not necessary here. 
Using the Zwanzig-Mori projection operator technique 1-7] with the 

set of projection operators appropriate to generating the equations of fluid 
mechanics [8],  we obtain the following form of the generalized Navier- 
Stokes equation: 

f0 c ~ , 6 g ( r , t ) = - V , ~ P ( r , t ) +  dt 'Vr .H(r-r ' , t - t ' ) :V , ,~g(r ' , t '  ) 

+ V,. baR(r, t) (4) 

Here 

6g(r, t )=g( r ,  t ) -  (~(r, 0 ) )  (5) 

is the deviation of the momentum density field from its average value in the 
stationary reference state and 6P(r, t) is the deviation of the generalized 
pressure. Finally, 6~R(r, t) is the part of the stress tensor that cannot be 
expressed as a functional of the deviations of the momentum density, tem- 
perature, and mass density fields from the average values appropriate to 
the reference steady state. 

The fourth-rank viscosity tensor H(r, t) is the time-autocorrelation 
function 

H(r, t) - ~ ]  f dr'(OffR(r + r', t) 6~(r', 0 ) )  - kTV 
(6) 

of the random microscopic stress fluctuation, ~ ~ = ~ -  ( ~ ) ,  and 

~R(r, t) = exp[iQL] Q6(r, 0) (7) 
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Here L is the Liouville operator of the system and Q is the projection 
operator complementary to the projection onto the fluctuations of the 
hydrodynamic fields mentioned above. The angle bracket denote averaging 
over a stationary distribution function Fo(F) such that LFo(F)= O. 

If one choses the equilibrium state of the system as the reference state, 
then Eq. (6) becomes the familiar equilibrium time-correlation function 
from which the Green-Kubo molecular definitions of various viscosity 
coefficients can be extracted. However, the equilibrium time-correlation 
functions cannot describe a non-Newtonian effect like shear thinning since 
the latter reflects the ordering of the nonspherical solute particles by an 
imposed nonuniform flow. In order to describe properties of the mixture 
that depend on certain types of imposed flows we must consider transport 
coefficients defined with respect to reference steady states different from 
states of equilibrium. Naturally, the stationary distribution function of the 
phase space variables, Fo(F), must depend on the parameters that charac- 
terize the stationary state. In other words, the non-Newtonian effects are, 
in the present formulation, connected with propagation of small pertur- 
bations superimposed upon the reference stationary flow. In general, exact 
analytic expressions for the nonequilibrium stationary distributions Fo(F) 
for particular flows are not known. Besides, as is the case for the Green- 
Kubo formulas, calculations of the transport coefficients directly from their 
definitions are impractical. The problem must first be reduced to a 
manageable level of complexity. Nevertheless, the general formulas are 
important and convenient in analysis. In particular, some conclusions 
about reciprocal relations can be obtained much more easily in this 
formulation than from the formulas of the standard theoretical rheology 
I-6]. With this point of view in mind we write the following expression for 
the stress generated in the mixture by a small perturbation of the stationary 
flow: 

e[r, t; ao + 5a(r, t ) ]  

= * o ( a o )  - ISP(r, t; ao) 

fl ( S f f ( r , t ) )  " 6a(r',t')+c~fflt(r,t;[lo) (8) + dt ' fdr ' \ ( ia(r ' ,  7) .:~o 

where, in the component notation, 

(-~a~ ) =Huk;(r--r ' , t--t '  ) (9) 
5~k;(r', t') ~o 

Equation (8) is specific to translationally invariant systems but easily can 
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be generalized. The quantity denoted by *o is the stress of the reference 
steady flow. The stationarity of this flow implies that the divergence of *o is 
zero. By a(r, t) in Eq. (8) we denote the velocity gradient tensor, a(r, t )=  
Vrg(r, 0 / /5 ,  with/5 the stoichiometric mass density of the mixture and ao the 
velocity gradient of the reference state (we consider only homogenous 
flows). Finally, 3a(r, t) is the perturbation 6ct(r, t )=a(r ,  t ) - a o .  From 
Eq. (8) it seems that there is a possible ambiguity in defining the viscosity 
tensor for a system in a nonequilibrium stationary state. Thus, one 
may define a stationary or hydrodynamic viscosity tensor through the 
connection 

Oo%(ao) 
H ~  - (10) 

~O~Okl 

between the stationary stress e0 and the corresponding velocity gradient 
ao. Alternatively, one can define the viscosity through the role it plays in 
the generalized Navier-Stokes equation (4), which governs the propagation 
of the perturbations upon the reference state. The second of these viscosity 
tensors is defined by the fluctuation-correlation formula, Eq. (6). The two 
sets of viscosities are likely to be related but not to be identical. 

3. SINGLE-ROD CONTRIBUTIONS TO THE STRESS 

One of the standard assumptions of rod-like particle suspension 
rheology is that the main contribution to the stress of the mixture comes 
from the internal stresses of single particles (due to the bonds that keep 
segments of the particle together) and, at higher concentrations, from inter- 
actions between different rods. The part of the stress due to the solvent- 
solute interaction is commonly neglected (*Bs = 0) and the contribution of 
the solvent is assumed to be the same in the mixture as it is in a pure 
solvent. Possible cross-correlations between microscopic stresses of 
solvent-solute and solute-solute particles also are neglected (at least in 
dilute solutions). Neither of these simplifications has ever been critically 
evaluated. By adopting these approximations we obtain the following 
expression for the Brownian particle contribution to the viscosity tensor 
(6): 

if HB(r, t) = ~ - #  dr'(b~RB(r + r', t) 66B(r', 0))  

C t ^ I  t 
-- ~ f dr <~J ~B(r  + r', t) J*u(r ,  0) ) (11 ) 
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The symbol ~ appearing in the last of these expressions denotes the single- 
particle microscopic stress tensor 

~I(r, 0 )=  [-M[Ifl-mitit+qqLql-1Uk(Iql)-zqB] 6 ( r - R )  (12) 

Here c is the number concentration of rods, M is the total mass of a rod, 
and m = M/4 is the reduced mass of the dumbbell. R and fl, respectively, 
are the location and velocity of the center of mass and q and /1 are the 
relative distance vector and corresponding velocity. U~(Iql ) is the binding 
potential, B is the (uniform) magnetic field, and z is the magnetic charge 
(It = zq is the magnetic dipole moment). For a rigid dumbbell we must take 
into account the additional constraint q "/1 = 0, which may be used to 
eliminate the binding force with the help of the equation of motion, 

m q =  -qlql  ~ g ~ ( l q l ) + z g + � 8 9  (13)  

for the relative distance vector. Here @(R) is the force of interaction of the 
dumbbell site with the surrounding solvent molecules. 

Consequently, for a rigid dumbbell Eq. (12) becomes 

~ ( r ,  0)  = { - M l l [ ! -  J e  x (~ x e) e x (+ x e) 

+ ee(l/2(e �9 VR)cU- e + #e .  B + j/~2] _ #eB} 3(r - R) (14) 

with l =  Iql denoting the distance between the sites and J =  (M/4)l 2 the 
moment of inertia of the rod. Finally, e = q/Iql is the unit vector in the 
direction of the dumbbell axis. 

The expression (14) still differs from the standard formulas for the 
rigid dumbbell stress [6] by the presence of the kinetic variables l~ and 
and the mechanical force ~.  The kinetic theory used almost exclusively in 
polymer and macroparticle rheology incorporates the assumption that the 
kinetic variables in liquids relax to their local equilibrium values on a time 
scale much shorter than that characteristic of the corresponding 
configuration variables. In condensed matter the kinetic energy is "ther- 
realized" more rapidly than is the potential energy because the latter 
process requires relatively slow particle transport. It also is assumed that 
the response of the smaller solvent particles is much faster than that of the 
macroparticles. These arguments enable one to simplify the calculation of 
the viscosities by using instead of the true microscopic stresses, Eq. (14) or 
(12), their preaveraged forms. Preaveraging (denoted by an over bar) is 
done over a distribution of the kinetic variables related to the dumbbells 
and of all other phase-space variables related to the particles that 
participate in the reference steady state. 
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If we tentatively adopt the local Maxwellian velocity distributions 

/ M \ s/2 M . 
f L , E Q . ( R ) = \ 2 ~ / [  | e x p { _  2 ~ [ R _ w o ( R ) ]  }2 (15) 

then the substitutions 

MRR ~ k T I  + Mwo(R) wo(R) 

J66 ~- k T ( I  - ee) + Je  . a o .  (I  - e e ) e  - a o -  ( I  - e e )  

can be used in Eqs. (12) and (14). It is less clear what one should substitute 
for an average force of the site-solvent particle interaction when the 
reference state is a steady flow. Obviously, if the reference state is a state of 
equilibrium, then the average force should vanish, i.e., oEQ(R)=0. In the 
case of a stationary flow most rheological treatises suggest the choice 

q ~ ( R )  = - � 8 9  [ R  - w o ( R ) ]  (19) 

Here { = ~JI e e  + r  e e )  is the friction tensor [3 ] and wo(R) the velocity 
of the reference steady flow. With this choice for the average force the 
preaveraged stress takes the form 

M wo(R)l cS(r - R) ~[(r, 0 )=  k T I - I  + f~(e, a o ) -  ~--~ wo(R) (20) 

The tensor f~ appearing here is defined by 

/s 
= 3 e e  - I + 2 ( e e e .  b - e b )  + ~ e e e .  a o -  e 

J 
k-~ [e .ao. ( I -  ee)e. ao. (I  - ee) - eee. ao- (I  - ee). ag. e] (21) 

ao a" is the transpose of ao, x=~H/~•  is an anisotropy factor [3], 
D = M k T / J ~ •  is the rotational diffusivity of the rod, and 2 = I~B/kT is the 
magnetic field coupling coefficient. Except for the numerical factor mul- 
tiplying the unit tensor and "centrifugal" terms related to the kinetic part of 
the stress, Eq. (20) agrees with that given in the Bird et al. monograph [9] 

(16) 

(17) 

(18) 

and 

2 ~  [e - e - a o ] - ( I -  ee) - [ ~ - e - a o l }  
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and attributed to Prager [10]. One should note here that the authors just 
cited do not distinguish between the reference flow and the perturbation. 
The velocity gradient in Ref. 9 can, in principle, be time dependent [ 10, 11 ] 
but this is not correct according to the present formulation. It also is not 
certain that Eq. (19) is truly correct even though the resulting Kramers- 
Prager formula for the stress and the related Giesekus expression [9] are 
now well established in the rheological literature. In Eq. (21) the third term 
(proportional to x) is a direct consequence of the assumption given by 
Eq. (19). It means physically that the solvent molecules in a stationary flow 
exert a stretching force along the rod axis due to the difference of the 
velocities of the flow at the two interaction sites. This seems plausible, but 
in contrast to the case of an equilibrium reference state, we are unable in 
this instance to check directly if the force @(R) really is different from zero 
and given by the standard friction force Eq. (19). The necessary conditional 
probabilities for a system in a stationary flow are unknown. However, if 
the Kramers-Prager expression is correct, then its direct consequence for 
the problem studied here is that the hydrodynamic viscosity H ~ defined by 
Eq. (10) differs from that given by the fluctuation-correlation formula, 
Eq. (11), even for those terms which are linear with respect to ao. This 
would produce a discontinuity between the linear response theory 
expressions obtained by perturbation of the equilibrium state and the 
"linear response" transport coefficients obtained for a stationary non- 
equilibrium flow. This problem does not arise if the Prager term is neglec- 
ted as has been done by some theoreticians interested in the dynamics of 
rod-like particles [12 14]. The terms linear with respect to the tensor tt o 
are then identical (in the low-frequency or long-time limit). However, 
differences still are to be expected in the nonlinear terms. 

4. D I F F U S I O N  I N  T H E  SMOLUCHOWSKI-DEBYE SPACE 

Since the microscopic stress given by Eq. (20) is expressed solely in 
terms of the dumbbell coordinates, one can perform in Eq. (11) a partial 
preaveraging (over a conditional, stationary probability distribution of all 
remaining phase space variables) of the evolution operator. Assuming that 
the standard Brownian dynamics theory is appropriate, the resulting 
propagator in the dumbbell configuration sphere is 

Z + (t, ao) = exp[-tS + (ao)] (22) 

The object S + appearing here is the adjoint Smoluchowski-Debye 
operator defined by 

S + (ao) = DiVe + 2b + e. et* 3. Ve (23) 
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and u* = ao/D. We also shall use the adjoint propagator 

Z(t, ao) = exp[tS(ao)]  

with 

191 

(24) 

S ( a o ) = D V e . [ V e - 2 b . ( I - e e ) - e . a ~ . ( I - e e ) ]  (25) 

denoting the Smoluchowski-Debye operator for rotational diffusion in the 
presence of the magnetic field and a homogeneous stationary flow. 

The operator given by Eq. (23) implies the following Rouse-like 
equation of motion for normal component [+. =/~. ( I -  ee)] of the orien- 
tation vector: 

• = D [ 2 b .  ( I -  ee) + e- a*. ( I -  ee)] (26) 

The operators given by Eqs. (22)-(25) have the following properties. 

(1) For an arbitrary function of orientation g,(e) 

~(e, t)=.E+(t, ao) qJ(e) (27) 

(2) For any distribution function ~b(e, t #0 )  

(~(e, t) = E(t, {to) ~b(e, t = 0) (28) 

(3) For a stationary distribution function such that S(uo)~bo(e)=0, 
it can be shown that ~(t, ao)~bo = ~bo and S~bo= ~bo S+. 

As a consequence of these relations the autocorrelation function 
expression for the viscosity tensor can be written in several alternative 
forms, forms, 

n v~ f okt,', ao) = kTc  de (Jo(e, Uo) ~g2kl~ + (t, {to) 6g2 o. 

= kTc  f de 6s ao) 6(2kl~bo(e, ao) 

= kTc  1 f de[~bo 6QktZ+ (t) 6(2~j + 3s ) 6(2klq~O ] (29) 

the last of which [ 15 ] is manifestly invariant with respect to an interchange 
of the first and last index pairs, (tj) and (kl). 

840/10/'1-13 
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5. LINEAR VISCOELASTIC EFFECTS 

In the linear response approximation (tto=0) the viscosity tensor 
given by Eq. (29) can be written in the form 

vol k Tc 
Hgkl(t) = --if- [a0(t)6ij6kt + al(t)(6it6jk + 6ik6jl) + az(t)(60-bkbt + 6ktbibj) 

+ a3(t ) 6i~bjbt + a4(t)6jlbibk + as(t)(6jkbibt + 6ilbjbk) + a6(t) bib:bkbz] 

(30) 

where the an's are time-dependent, scalar viscosity coefficients. In this 
approximation the tensor 6f~ is traceless and so the coefficients satisfy the 
two relations 

3ao+2al+a2=O;  3 a 2 + a 3 + a 4 + 2 a s + a 6 = O  (31) 

Thus, there are only five linearly independent viscosity coefficients an 
associated with an incompressible flow. 

Since the equilibrium distribution of the permanent dipole orientation 
in a constant magnetic field is known to be 

~bEQ(e. b) = [4n2-1sh,~] 1 exp[2e, b] (32) 

a calculation of the coefficients a, from Eq. (29) is, in principle, possible. 
Once the viscosities are known as functions of time and the coupling 
constant 2, we then can calculate all relevant rheological quantities (such 
as the Leslie coefficients, Mi~sowicz viscosities, and elongational viscosity) 
which are linear combinations of the a,'s. In particular, we obtain the 
following formulas for the Mi~sowicz viscosities corresponding to flow 
geometries given below: 

kTc 
q~ =--D-- (~  + 43) (33) 

for blln3, Wol In3, (1 o = ~~ 

kTc 
(34) 

for blln3, Wol[nl, ao=~~ and 

kTc 
r =---b-- ~ 1 (35) 
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for blln 3, wolln2, r176 Here n i ( i= 1, 2, 3) denotes a unit vector in 
the direction of the ith Cartesian axis. 

For a stationary elongational flow the Trouton viscosity is given by 

kTc 
h, =-D-- (3~1 + ~3 + 2~5 + ~6) (36) 

In Eqs. (33)-(36) the symbols ~n(~o) denote Laplace transforms of the 
corresponding time-dependent functions an(t). Stationary values of the 
transport coefficients are the zero-frequency values of ~,. 

The Leslie coefficients occur in the Leslie Ericksen form of the viscous 
stress tensor, which can be written as 1-16] 

a~j isc = / - t t  bk b/Dklbibj + It2 biNj + #3 bjNi + ~An Do + #5 bib~ Dkj + p6bjbkDki 

(37 )  
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Fig. 1. Mi~sowicz viscosities versus reduced 
frequency ~/D. ( �9  Viscosity values in the field- 
free limit of 2 = 0. All of the curves are specific to 
the value of 2 = 1 .  ( - - - )  r/l; ( - - )  q2; ( - - )  for 
q3. The upper set of curves shows the real parts 
of these complex valued coefficients, whereas the 
lower set shows the imaginary parts. 
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with Dij=�89 and N i =  1 --~(~Oik--CCOk,)bk. Summations over 
repeating indexes are implied. 

The Leslie coefficients p, are related to the coefficients a, by the 
expressions 

I.tj = [ k Tc/D ] #j (38) 

with  / 2 1 = a 6 ,  fi2=a4-a5, fi3=as-a3, / 2 4 = 2 a l ,  / 2 5 = a 4 + a s ,  and  

fi6 = a3 + as. 
Unfortunately, in spite of the apparent simplicity of the evolution 

operators given by Eqs. (22) and (24), an exact solution of the diffusion 
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Fig. 2. The elongational viscosity versus reduced 
frequency. The labels on the curves indicate values of 
the parameter 2. 
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problem has not yet been found. We [8] ,have been able to obtain 
relatively simple asymptotic formulas only for small values of 2. In the low- 
frequency limit these are 

1 22 7 1 _  22 1 t~2(0) = 22 91 
~~ - 15 45--6; 41(0) = 180; 1575; 

43(0)= __22 11 22 3 __22 51 
600; 44(0) = 200; 45(0) = 60--6 

(39) 

and 46(0 ) = 0(24) .  Examples of Mi~sowicz and elongational viscosities as 
functions of frequency are given [8] in Figs. 1 and 2. 

6. SHEAR VISCOSITY FOR A STATIONARY FLOW 

It is of interest to compare previous results with those obtained from a 
calculation of the apparent hydrodynamic viscosity of a stationary flow. By 
retaining only the orientation-dependent part of the stress in Eq. (20), we 
obtain the formula 

Oo(ao) = kTc f def~(e, ao) q~o(e, ao) (40) 

This contains a stationary distribution function q~0 which satisfies 
S(a0)q~0=0. Assuming that the stationary distribution is an analytic 
function of the velocity gradient a* and that the latter is small, we can 
write q~0 as a sum, q~0 = q~EQ + 6q~0, where 6qo 0 is linear with respect to a*. 
The substitution of this into Eq. (40) leads to the following expression for 
the rod contribution to the stationary Newtonian stress tensor: 

~o(ao) =H~ (41) 

The stationary viscosity tensor H ~ occurring in (41) is given by the formula 

H~ k Tc f Io ~ = x de~0EQ(e, b) eeee + dt HV~ a o = 0) 
D 

(42) 

and H v~ is defined by Eq. (29). The first term on the right-hand side of 
Eq. (42) can be calculated exactly. Here we report the corrections dian 
which must be added to the corresponding coefficients a,  of Eq. (39): 

ao = r = ~ tr 
1 

~ a n = ~ t r  2 for n > l  (43) 
l t )  D 



196 Altenberger and Dahler 

7. CONCLUSIONS AND SUMMARY 

Our results indicate that the present understanding of the rheology of 
nonsimple fluids is far from complete. More work on the formal structure 
of the theory is necessary. It apparently is possible to define transport coef- 
ficients (in this case the viscosity tensor) with respect to a stationary state 
different from the equilibrium state. These are given by time-correlation 
functions similar to the Green-Kubo formulas to which they reduce in case 
of ordinary linear-response theory. These transport coefficients are 
functionally defined by a generalized Navier-Stokes equation which deter- 
mines the time evolution of the perturbation of the flow from the reference 
steady state. Within the particular rheological model studied here it is 
somewhat unsettling to find that the two possible methods of defining 
viscosity (through the time-correlation function formula and relation 
between stationary stress in the reference state and velocity gradient tensor) 
may lead to different results for stationary, nonequilibrium flows. This 
ambiguity is related in part to a particular assumption about the average 
force of solvent-particle interaction which leads to the Kramers-Prager 
formula for the stress contribution of the rod-like particles. However, the 
problem does not disappear even if the contribution of this force is totally 
neglected (as should be done in the linear response theory for the 
equilibrium reference state). 

Another problem that concerns us is the search for fundamental 
solutions of the rotational diffusion equation in the presence of an external 
field and flow. A solution to this problem is essential for the calculation of 
the transport properties for a field of arbitrary strength and for the deter- 
mination of non-Newtonian effects. 

Finally, it would be interesting to extend the theory to concentrated 
solutions with particle interactions taken into account. Some progress in 
this direction has been made in a closely related field of nematic liquid 
crystals. 
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